In this chapter, iterated sigma-point Kalman filter (ISPKF) methods are used for nonlinear state variable and model parameter estimation. Different conventional state estimation methods, namely the unscented Kalman filter (UKF), the central difference Kalman filter (CDKF), the square-root unscented Kalman filter (SRUKF), the squareroot central difference Kalman filter (SRCDKF), the iterated unscented Kalman filter (IUKF), the iterated central difference Kalman filter (ICDKF), the iterated square-root unscented Kalman filter (ISRUKF) and the iterated square-root central difference Kalman filter (ISRCDKF) are evaluated through a simulation example with two comparative studies in terms of state accuracies, estimation errors and convergence. The state variables are estimated in the first comparative study, from noisy measurements with the several estimation methods. Then, in the next comparative study, both of states and parameters are estimated, and are compared by calculating the estimation root mean square error (RMSE) with the noise-free data. The impacts of the practical challenges (measurement noise and number of estimated states/ parameters) on the performances of the estimation techniques are investigated. The results of both comparative studies reveal that the ISRCDKF method provides better estimation accuracy than the IUKF, ICDKF and ISRUKF. Also the previous methods provide better accuracy than the UKF, CDKF, SRUKF and SRCDKF techniques. The ISRCDKF method provides accuracy over the other different estimation techniques; by iterating maximum a posteriori estimate around the updated state, it re-linearizes the measurement equation instead of depending on the predicted state. The results also represent that estimating more parameters impacts the estimation accuracy as well as the convergence of the estimated parameters and states. The ISRCDKF provides improved state accuracies than the other techniques even with abrupt changes in estimated states.