The objective of this paper is to propose a new damage detection technique based on multiscale partial least squares (MSPLS) and optimized exponentially weighted moving average (OEWMA) generalized likelihood ratio test (GLRT) to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the exponentially weighted moving average (EWMA) and GLRT charts with those of multiscale input-output model partial least square (PLS) and multi-objective optimization. The damage detection problem is addressed so that the data are first modeled using the MSPLS method and then the damages are detected using the OEWMA-GLRT chart. The idea behind the developed OEWMA-GLRT is to compute an optimal statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data and selects the EWMA parameters that minimizes the (MDR), the false alarm rate (FAR) and the average run length (ARL 1 ). This helps provide a more accurate estimation of the GLRT statistic and provide a stronger memory that enables better decision making with respect to damage detection. The performance of the developed technique is assessed and compared with PLS-based GLRT, PLS-based OEWMA, and PLS-based OEWMA-GLRT techniques using two illustrative examples, synthetic data and simulated International Association for Structural Control-American society of Civil engineers (IASC-ASCE) benchmark structure. The results demonstrate the effectiveness of the MSPLS-based OEWMA-GLRT technique over the PLS-based GLRT, PLS-based OEWMA, and PLS-based OEWMA-GLRT methods in terms of MDR, FAR, and ARL 1 values. KEYWORDS damage detection, exponentially weighted moving average, generalized likelihood ratio test, multiscale, partial least squares, structural health monitoring Struct Control Health Monit. 2019;26:e2287.wileyonlinelibrary.com/journal/stc
A new fault detection technique is considered in this article. It is based on kernel partial least squares, exponentially weighted moving average, and generalized likelihood ratio test. The developed approach aims to improve monitoring the structural systems. It consists of computing an optimal statistic that merges the current information and the previous one and gives more weight to the most recent information. To improve the performances of the developed kernel partial least squares model even further, multiscale representation of data will be used to develop a multiscale extension of this method. Multiscale representation is a powerful data analysis way that presents efficient separation of deterministic characteristics from random noise. Thus, multiscale kernel partial least squares method that combines the advantages of the kernel partial least squares method with those of multiscale representation will be developed to enhance the structural modeling performance. The effectiveness of the proposed approach is assessed using two examples: synthetic data and benchmark structure. The simulation study proves the efficiency of the developed technique over the classical detection approaches in terms of false alarm rate, missed detection rate, and detection speed.
In this chapter, iterated sigma-point Kalman filter (ISPKF) methods are used for nonlinear state variable and model parameter estimation. Different conventional state estimation methods, namely the unscented Kalman filter (UKF), the central difference Kalman filter (CDKF), the square-root unscented Kalman filter (SRUKF), the squareroot central difference Kalman filter (SRCDKF), the iterated unscented Kalman filter (IUKF), the iterated central difference Kalman filter (ICDKF), the iterated square-root unscented Kalman filter (ISRUKF) and the iterated square-root central difference Kalman filter (ISRCDKF) are evaluated through a simulation example with two comparative studies in terms of state accuracies, estimation errors and convergence. The state variables are estimated in the first comparative study, from noisy measurements with the several estimation methods. Then, in the next comparative study, both of states and parameters are estimated, and are compared by calculating the estimation root mean square error (RMSE) with the noise-free data. The impacts of the practical challenges (measurement noise and number of estimated states/ parameters) on the performances of the estimation techniques are investigated. The results of both comparative studies reveal that the ISRCDKF method provides better estimation accuracy than the IUKF, ICDKF and ISRUKF. Also the previous methods provide better accuracy than the UKF, CDKF, SRUKF and SRCDKF techniques. The ISRCDKF method provides accuracy over the other different estimation techniques; by iterating maximum a posteriori estimate around the updated state, it re-linearizes the measurement equation instead of depending on the predicted state. The results also represent that estimating more parameters impacts the estimation accuracy as well as the convergence of the estimated parameters and states. The ISRCDKF provides improved state accuracies than the other techniques even with abrupt changes in estimated states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.