Prediction of chip breaking in machining is an important task for automated manufacturing. This paper presents a study on chip breaking limits. Based on the chip breaking curve, the critical feed-rate is modeled through an analysis of up-curl chip formation, and the critical depth-of-cut is formulated through a discussion of side-curl dominant chip formation processes. Factors affecting chip-breaking limits are also discussed.In order to predict the chip breaking limits, semi-empirical models are established. Although the coefficients that occur in the model are estimated through machining tests, the models are applicable to a broad range of machining conditions. The model parameters include machining conditions, tool geometry, and workpiece material properties.