2021
DOI: 10.1029/2020jb020135
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Global Marine Sediment Density Using the Random Forest Regressor Machine Learning Algorithm

Abstract: One such study, on a global scale, evaluated several subsurface physical properties, and culminated in the CRUST1.0 Earth model (Laske et al., 2013). The CRUST1.0 Earth model is a 1°×1° global assessment of

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
22
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 45 publications
(26 citation statements)
references
References 20 publications
2
22
0
2
Order By: Relevance
“… 2020b ) 0.5 0.54 22.7 0.02 101.01 0.2 0.27 17.3 0.01 35.17 0.69 0.72 3.48 0.02 4.21 PoissonRegressor (Ranzato and Szummer 2008 ) 0.5 0.55 22.64 0.02 73.94 0.47 0.51 14.14 0.02 45.12 0.71 0.74 3.38 0.02 8.32 RandomForestRegressor (Graw et al. 2021 ) 0.47 0.52 23.36 0.19 74.12 0.49 0.53 13.86 0.18 45.12 0.8 0.82 2.82 0.18 8.28 RANSACRegressor (Aziz et al. 2020 ) 0.46 0.51 23.51 0.08 71.43 0.41 0.47 14.8 0.08 40.97 0.75 0.78 3.11 0.07 …”
Section: Discussionunclassified
“… 2020b ) 0.5 0.54 22.7 0.02 101.01 0.2 0.27 17.3 0.01 35.17 0.69 0.72 3.48 0.02 4.21 PoissonRegressor (Ranzato and Szummer 2008 ) 0.5 0.55 22.64 0.02 73.94 0.47 0.51 14.14 0.02 45.12 0.71 0.74 3.38 0.02 8.32 RandomForestRegressor (Graw et al. 2021 ) 0.47 0.52 23.36 0.19 74.12 0.49 0.53 13.86 0.18 45.12 0.8 0.82 2.82 0.18 8.28 RANSACRegressor (Aziz et al. 2020 ) 0.46 0.51 23.51 0.08 71.43 0.41 0.47 14.8 0.08 40.97 0.75 0.78 3.11 0.07 …”
Section: Discussionunclassified
“…Granat et al (2021) utilize clustering methods on global navigation satellite system data to identify major faults in California. Graw et al (2021) utilize the random forest regressor to interpolate for a global marine sediment density map from measurements at a few sparsely distributed locations. You et al (2021) train a generative adversarial network to compress complex two-dimensional digital rock images into one-dimensional latent space vectors and exploit the linearity of these vectors to interpolate between the two-dimensional images for a complete three-dimensional rock structure.…”
Section: Geophysical Data Processing and Image Interpretationmentioning
confidence: 99%
“…Efforts for marine geoscientists to become "data literate" beyond the immediate needs of their own datasets are already underway Frontiers in Earth Science frontiersin.org through organizations such as Community Surface Dynamics Modeling System (CSDMS) and the Research Data Alliance (Berman et al, 2014). An example of data-driven marine geoscience can be found in recent machine learning efforts that provide both marine geoscience analyses and identify parametrically unique regions to sample (e.g., Lee et al, 2019;Graw et al, 2020). Analyses such as these pinpoint regions of geologic interest, instead of geographic interest, that are ideal for further data collection.…”
Section: Improvementsmentioning
confidence: 99%