2022
DOI: 10.1007/s42521-022-00057-7
|View full text |Cite
|
Sign up to set email alerts
|

Predicting interest rate distributions using PCA & quantile regression

Abstract: Principal component analysis (PCA) is well established as a powerful statistical technique in the realm of yield curve modeling. PCA based term structure models typically provide accurate fit to observed yields and explain most of the cross-sectional variation of yields. Although principal components are building blocks of modern term structure models, the approach has been less explored for the purpose of risk modelling—such as Value-at-Risk and Expected Shortfall. Interest rate risk models are generally chal… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 70 publications
0
0
0
Order By: Relevance