Slab and pile foundations are one of the most popular solutions for transferring building loads to the ground. This is due to the combination of the advantages of direct and indirect foundations. Unfortunately, the lack of studies on this type of foundation that present the theoretical and practical dimensions of this approach is apparent. This article presents the theoretical background of this issue, capturing the advantages and disadvantages of this solution. The authors lean into the theoretical derivation by demonstrating various computational approaches. Thanks to the theoretical derivation and the citation of various computational approaches, it is possible to correctly determine the bearing capacity of the slab itself or the piles themselves in a slab–pile foundation. In addition, the authors have prepared numerical calculations based on theoretical considerations. The numerical analysis method shows the convergence of the selected theoretical method, which confirms the uniqueness of this computational approach through back analysis and validation of numerical models with Robot Structural Analysis software. The numerical consideration confirms the correct distribution of pile- and slab-bearing capacities; thus, it is possible to design the slab–pile foundation economically. With this verification, the design method of this type of foundation can be correctly determined.