Biophysical cues robustly direct cell responses and are thus important tools for
in vitro
and translational biomedical applications. High
throughput platforms exploring substrates with varying physical properties are
therefore valuable. However, currently existing platforms are limited in
throughput, the biomaterials used, the capability to segregate between different
cues and the assessment of dynamic responses. Here we present a multiwell array
(3 × 8) made of a substrate engineered to present topography or rigidity cues
welded to a bottomless plate with a 96-well format. Both the patterns on the
engineered substrate and the well plate format can be easily customized,
permitting systematic and efficient screening of biophysical cues. To
demonstrate the broad range of possible biophysical cues examinable, we designed
and tested three multiwell arrays to influence cardiomyocyte, chondrocyte and
osteoblast function. Using the multiwell array, we were able to measure
different cell functionalities using analytical modalities such as live
microscopy, qPCR and immunofluorescence. We observed that grooves (5
μ
m in size) induced less variation in contractile function
of cardiomyocytes. Compared to unpatterned plastic, nanopillars with 127 nm
height, 100 nm diameter and 300 nm pitch enhanced matrix deposition,
chondrogenic gene expression and chondrogenic maintenance. High aspect ratio
pillars with an elastic shear modulus of 16 kPa mimicking the matrix found in
early stages of bone development improved osteogenic gene expression compared to
stiff plastic. We envisage that our bespoke multiwell array will accelerate the
discovery of relevant biophysical cues through improved throughput and
variety.