Malaria remains a major public health problem mainly in particular South East Asian countries. As malaria transmission and Anopheles spp. continues to spread, control interventions should emphasize on the ability to define potential areas that can favor Anopheles spp. distribution. Then there is an urgent need to use novel approach capable to predict potential spatial patterns of Anopheles spp. and delineate malaria potential hotspots for better environmental health planning and management. Here, this study modeled Anopheles spp. potential distribution as a function of 15 bioclimatic variables using Species Distribution Modeling (SDM) in South Coast of West Java Province spans over 20 km from West to East. Findings of this study show that bioclimatic variables and SDM can be used to predict Anopheles spp. habitat suitability, suggesting the possibility of developing models for malaria early warning based on habitat suitability model. The resulting model shows that the potential distributions of Anopheles spp. encompassed areas from West to Central parts of the coasts, with Central parts were the most potential prevalence areas of Anopheles spp. considering this area has higher precipitation. The less potential prevalence areas of Anopheles spp. were observed in the East parts of the coast. The model also shows that inland areas adjacent to the settlements were more potential in comparison to the areas near coast and in the beach. Land cover conditions dominated by cropland, herbaceous wetland, and inundated land were also influencing the Anopheles spp. potential distribution.