Encyclopedia of Statistical Sciences 2010
DOI: 10.1002/0471667196.ess7123
|View full text |Cite
|
Sign up to set email alerts
|

Predicting Preclinical Disease by Using The Mixed‐Effects Regression Model

Abstract: Most methods of disease prediction are generally restricted to logistic or Cox proportional hazards model regression using only baseline values of the risk factor, and where the individuals age and sex account for most of the predictive capacity of the method. This chapter presents a method of risk prediction appropriate for repeated measures or time‐dependent risk factors from longitudinal studies. The method is based on posterior probabilities calculated from mixed‐effects regression models to model intra‐ a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0

Year Published

2010
2010
2021
2021

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(5 citation statements)
references
References 23 publications
0
5
0
Order By: Relevance
“…The method is appropriate for repeated measurements on the same individuals over an extended period of observation 22,23. Following a method for predicting preclinical disease using linear mixed-effects models, longitudinal trajectories were estimated for each of the four BP indices over all study participants.…”
Section: Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…The method is appropriate for repeated measurements on the same individuals over an extended period of observation 22,23. Following a method for predicting preclinical disease using linear mixed-effects models, longitudinal trajectories were estimated for each of the four BP indices over all study participants.…”
Section: Methodsmentioning
confidence: 99%
“…Random-effects terms in the model included intercept to account for between-person variability as well as possibly for time, and time2 as tested for inclusion by a likelihood-ratio χ 2 test. 29 The marginal distributions from the mixed-effects model for being a CHD event and non-event for each individual are then computed and using Bayes theorem posterior probabilities of having CHD are obtained at each serial BP measurement for each individual 22,23. Since it was not possible to perform a mixed-effects regression analysis on the entire VHM&PP population because of the enormous amount of required computer memory, a random sample was chosen representing approximately 5% of the VHM&PP study population to obtain the mixed-effects estimates for the subsequent CHD predictions.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Mixed-effects models were used in earlier studies to model univariate or multivariate repeated (longitudinal) clinical data. [20][21][22][23][24][25][26][27][28][29][30][31] Because of their ability to integrate irregular sampling intervals and varying sequence lengths, mixed-effects models were applied for medical diagnosis with longitudinal data in general [32][33][34][35][36][37][38][39][40][41] and in the field of neurodegeneration in particular 23,38,41 . In recent years, mixedeffects models were implemented to derive flexible predictions based on variable subsets of measurements or dynamically updating predictions in case new measurements were collected.…”
Section: Discussionmentioning
confidence: 99%
“…In this study mixed-effects model-based estimation was embedded into linear (or quadratic, see Supplementary Methods 3-4) discriminant models to account for inter-subject differences [32][33][34][35]40,41,47 (Fig. 9A-B).…”
Section: A Multi-variate Longitudinal Discriminant Model For Sequenti...mentioning
confidence: 99%