2016
DOI: 10.1016/j.enbuild.2016.06.029
|View full text |Cite
|
Sign up to set email alerts
|

Predicting the CO2 levels in buildings using deterministic and identified models

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

4
25
1
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
4
4
1

Relationship

0
9

Authors

Journals

citations
Cited by 52 publications
(32 citation statements)
references
References 33 publications
4
25
1
2
Order By: Relevance
“…Similar values of the MAPE coefficient were found by Pantazaras et al [31], who measured and simulated the concentration of CO2 inside of office buildings to estimate future levels of the contaminant. Basing the modelling on the occupancy schedule of the family members allowed the proper estimation of CO2 generation rates.…”
Section: Discussionsupporting
confidence: 67%
“…Similar values of the MAPE coefficient were found by Pantazaras et al [31], who measured and simulated the concentration of CO2 inside of office buildings to estimate future levels of the contaminant. Basing the modelling on the occupancy schedule of the family members allowed the proper estimation of CO2 generation rates.…”
Section: Discussionsupporting
confidence: 67%
“…Biswas described, that the artificial neural network has emerged as a key method to address the issue of nonlinearity of building energy data and the robust calculation of large and dynamic data [49]. Pantazaras used incorporating CO 2 concentration as a factor in predictive models may unlock further optimization opportunities in controller applications, especially in buildings with highly varied occupancy, such as institutional buildings with the results, which suggest that there is indeed potential for at least short-term prediction using a very simple identification procedure [50]. Leung presents an investigation into the use of occupancy space electrical power demand to mimic occupants' activities in building cooling load prediction by intelligent approach, where the effect of individual behaviour on cooling load demand is less significant at building level than at office level and the proposed cooling demand prediction approach is able to predict daily peak loads satisfactory which would be useful for system dimensioning.…”
Section: Second Part-the Optimized Artificial Neural Network Model Wimentioning
confidence: 99%
“…Концентрация СО 2 в воздухе помещения является одним из ключевых факторов управления системами обеспечения микроклимата здания [2].…”
Section: моделирование влияния окон повышенной герметичности на теплоunclassified
“…Моделируются и мониторятся изменения основных параметров микроклимата: температура внутреннего воздуха, относительна влажность и концентрация углекислого газа СО 2 в воздухе. А потенциал энергосбережения в системах управления микроклиматом здания с ипользованием в качестве одного из основных параметров концентрацию СО 2 очень велик [2]. При этом набирают популярность исследования в области адаптивного теплового комфорта [3].…”
unclassified