The transmission of vector-borne diseases is governed by complex factors including pathogen characteristics, vector-host interactions, and environmental conditions. Temperature is a major driver for many vector-borne diseases including Bluetongue viral (BTV) disease, a midge-borne febrile disease of ruminants, notably livestock, whose etiology ranges from mild or asymptomatic to rapidly fatal, thus threatening animal agriculture and the economy of affected countries. Using modeling tools, we seek to predict where transmission can occur based on suitable temperatures for BTV. We fit thermal performance curves to temperature sensitive midge life history traits, using a Bayesian approach. Then, we incorporated these into a new formula for the disease basic reproductive number, R 0 , to include trait responses, for two species of key midge vectors, Culicoides sonorensis and Culicoides variipennis. Our results show that outbreaks of BTV are more likely between 15 • C and 33 • C with predicted peak transmission at 26 • C. The greatest uncertainty in R 0 is associated with the uncertainty in: mortality and fecundity of midges near optimal temperature for transmission; midges' probability of becoming infectious post infection at the lower edge of the thermal range; and the biting rate together with vector competence at the higher edge of the thermal range. We compare our R 0 to two other R 0 formulations and show that incorporating thermal curves into all three leads to similar BTV risk predictions. To demonstrate the utility of this model approach, we created global suitability maps indicating the areas at high and long-term risk of BTV transmission, to assess risk, and anticipate potential locations of establishment.