2021
DOI: 10.3390/agronomy11112145
|View full text |Cite
|
Sign up to set email alerts
|

Predicting the Photosynthetic Rate of Chinese Brassica Using Deep Learning Methods

Abstract: Water stress is a significant element impacting photosynthesis, which is one of the major physiological activities governing crop growth and development. In this study, the photosynthetic rate of Brassica chinensis L. var. parachinensis (Bailey) (referred to as Chinese Brassica hereafter) was predicted using the deep learning method. Five sets of Chinese Brassica were created, each with a different water stress gradient. Air temperature (Ta), relative humidity (RH), canopy temperature (Tc), transpiration rate … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
references
References 50 publications
(55 reference statements)
0
0
0
Order By: Relevance