2021
DOI: 10.1007/978-3-030-88378-2_18
|View full text |Cite
|
Sign up to set email alerts
|

Predicting the Stock Market Trend: An Ensemble Approach Using Impactful Exploratory Data Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
3
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
2
1

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 15 publications
0
3
0
3
Order By: Relevance
“…This pandemic has significantly disturbed and influenced stock market activity around the world [ 7 ]. In year 2020, due to the effects of pandemic, it was estimated that the China's Gross Domestic Product (GDP) may fall by 6.2 percent, while the United States (US) GDP may plunge down by 8.4 percent [ 2 , 8 ]. The rest of the world's currency could lose 5.9% of its value.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…This pandemic has significantly disturbed and influenced stock market activity around the world [ 7 ]. In year 2020, due to the effects of pandemic, it was estimated that the China's Gross Domestic Product (GDP) may fall by 6.2 percent, while the United States (US) GDP may plunge down by 8.4 percent [ 2 , 8 ]. The rest of the world's currency could lose 5.9% of its value.…”
Section: Introductionmentioning
confidence: 99%
“…e analysis of the voluminous volatile and dynamic nancial data is challenging. With the advent of online trading, people are moving towards the automated intelligent decision support systems rather than using classical fundamental analysis approaches for stock price prediction [2,3]. e global economy and stock markets have been greatly a ected by COVID-19.…”
Section: Introductionmentioning
confidence: 99%
“…Por otro lado, cuando se garantiza la seguridad de los datos y se restringe el uso de información redundante, los riesgos de inconsistencia y pérdida de integridad de los datos son prácticamente reducidos, lo que implica, una vez construido el modelo, que la producción de resultados sea con altos niveles de calidad. No obstante, los autores en [393] señalan que la calidad de los datos de entrada mejora con la extracción de nuevos atributos a partir del espacio de características original.…”
Section: A Conservación De Datosunclassified
“…Además, utilizando el algoritmo GBM como clasificador obtiene una precisión del 59% prediciendo el rendimiento diario de las acciones de la Bolsa de Estambul (BIST). [393] utiliza la correlación lineal de Pearson como criterio de selección de las características más relevantes para construir modelos de regresión de bosque aleatorio (RFR) y de regresión de gradiente extremo (XGBR) y predecir la tendencia del índice Nifty50. Sin embargo, hay que señalar que algunos estudios [393] consideran que la calidad de los datos de entrada se mejora ampliando el espacio de características con atributos "más relevantes" derivados de los atributos originales.…”
Section: Métodos De Filtrounclassified
See 1 more Smart Citation