With the advent of technological marvels like global digitization, the prediction of the stock market has entered a technologically advanced era, revamping the old model of trading. With the ceaseless increase in market capitalization, stock trading has become a center of investment for many financial investors. Many analysts and researchers have developed tools and techniques that predict stock price movements and help investors in proper decision-making. Advanced trading models enable researchers to predict the market using non-traditional textual data from social platforms. The application of advanced machine learning approaches such as text data analytics and ensemble methods have greatly increased the prediction accuracies. Meanwhile, the analysis and prediction of stock markets continue to be one of the most challenging research areas due to dynamic, erratic, and chaotic data. This study explains the systematics of machine learning-based approaches for stock market prediction based on the deployment of a generic framework. Findings from the last decade (2011–2021) were critically analyzed, having been retrieved from online digital libraries and databases like ACM digital library and Scopus. Furthermore, an extensive comparative analysis was carried out to identify the direction of significance. The study would be helpful for emerging researchers to understand the basics and advancements of this emerging area, and thus carry-on further research in promising directions.
The unprecedented Corona Virus Disease (COVID-19) pandemic has put the world in peril and shifted global landscape in unanticipated ways. The SARSCoV2 virus, which caused the COVID-19 outbreak, first appeared in Wuhan, Hubei Province, China, in December 2019 and quickly spread around the world. This pandemic is not only a global health crisis, but it has caused the major global economic depression. As soon as the virus spread, stock market prices plummeted and volatility increased. Predicting the market during this outbreak has been of substantial importance and is the primary motivation to carry out this work. Given the nonlinearity and dynamic nature of stock data, the prediction of stock market is a challenging task. The machine learning models have proven to be a good choice for the development of effective and efficient prediction systems. In recent years, the application of hyperparameter optimization techniques for the development of highly accurate models has increased significantly. In this study, a customized neural network model is proposed and the power of hyperparameter optimization in modelling stock index prices is explored. A novel dataset is generated using nine standard technical indicators and COVID-19 data. In addition, the primary focus is on the importance of selection of optimal features and their preprocessing. The utilization of multiple feature ranking techniques combined with extensive hyperparameter optimization procedures is comprehensive for the prediction of stock index prices. Moreover, the model is evaluated by comparing it with other models, and results indicate that the proposed model outperforms other models. Given the detailed design methodology, preprocessing, exploratory feature analysis, and hyperparameter optimization procedures, this work gives a significant contribution to stock analysis research community during this pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.