2023
DOI: 10.1021/acsestwater.3c00020
|View full text |Cite
|
Sign up to set email alerts
|

Predicting THM Formation and Revealing Its Contributors in Drinking Water Treatment Using Machine Learning

Abstract: Trihalomethanes (THMs) are disinfection byproducts (DBPs) that are formed during chemical disinfection of drinking water. However, a variety of factors, including water qualities and treatment conditions, can influence THM formation, making it challenging to predict and highlight the underlying mechanisms. Here, we used machine learning (ML) algorithms to analyze the complex relations between influent characteristics and operational parameters to predict THM formation. Five ML algorithms were used to create pr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 11 publications
(1 citation statement)
references
References 110 publications
0
1
0
Order By: Relevance
“…The special issue includes several review articles encompassing a wide spectrum, ranging from a historical perspective of water data to computational modeling in wastewater treatment to ML modeling of environmental chemical reactions, environmental toxicology, heavy metal removal, and cyanobacterial harmful algal blooms (HABs) . One significant application of these innovative tools is ML-assisted environmental monitoring, which can address diverse problems, such as predicting effluent nutrients or influent flow rates and nutrient loads at wastewater treatment plants, , formation of disinfection byproducts, drivers of the accumulation of potentially toxic elements in sediments, greenhouse gas emissions, , occurrence of PFAS, water quality assessment, microplastics, microcystins, and differentiation of landfill leachate and domestic sludge . ML has also been extensively employed to model environmental chemical reactions and processes, including adsorption onto various materials, , biodegradation, photodegradation, and the physicochemical and meteorological variables that affect the seasonal growth and decline of HABs .…”
mentioning
confidence: 99%
“…The special issue includes several review articles encompassing a wide spectrum, ranging from a historical perspective of water data to computational modeling in wastewater treatment to ML modeling of environmental chemical reactions, environmental toxicology, heavy metal removal, and cyanobacterial harmful algal blooms (HABs) . One significant application of these innovative tools is ML-assisted environmental monitoring, which can address diverse problems, such as predicting effluent nutrients or influent flow rates and nutrient loads at wastewater treatment plants, , formation of disinfection byproducts, drivers of the accumulation of potentially toxic elements in sediments, greenhouse gas emissions, , occurrence of PFAS, water quality assessment, microplastics, microcystins, and differentiation of landfill leachate and domestic sludge . ML has also been extensively employed to model environmental chemical reactions and processes, including adsorption onto various materials, , biodegradation, photodegradation, and the physicochemical and meteorological variables that affect the seasonal growth and decline of HABs .…”
mentioning
confidence: 99%