InterDendritic Solidification (IDS) is a thermodynamic-kinetic software combined with a microstructure tool developed to simulate the nonequilibrium solidification (non-EQS) of steels. Herein, its main calculation module, solidification (SOL), is introduced, and some essential results of that module, such as the formation of ferrite and austenite in different types of steels during their solidification, and the formation and dissolution of precipitates during subsequent cooling and heating processes, respectively, following solidification, are presented. The non-EQS is compared with equilibrium and poor-kinetics solidification to demonstrate the effect of kinetics on the results using finite solute diffusion and microstructure data. The poor-kinetics solidification is comparable with the modified Scheil simulation ignoring the solid-state diffusion of slowly moving metallic elements. A particular emphasis is made on demonstrating how to use a postprocessing treatment to control the residual ferrite amounts in stainless steels and the extent of precipitation in particular steel. In this context, the phenomena occurring behind the results are discussed. Finally, to validate the simulations of the SOL module, its calculations are compared with numerous solidification measurements, such as the liquidus and solidus temperatures of different steels and the residual ferrite amounts in stainless steels.