BackgroundPaediatric appendicitis may be challenging to diagnose, and outcomes difficult to predict. While diagnostic and prognostic scores exist, artificial intelligence (AI) may be able to assist with these tasks.MethodA systematic review was conducted aiming to evaluate the currently available evidence regarding the use of AI in the diagnosis and prognostication of paediatric appendicitis. In accordance with the PRISMA guidelines, the databases PubMed, EMBASE, and Cochrane Library were searched. This review was prospectively registered on PROSPERO.ResultsTen studies met inclusion criteria. All studies described the derivation and validation of AI models, and none described evaluation of the implementation of these models. Commonly used input parameters included varying combinations of demographic, clinical, laboratory, and imaging characteristics. While multiple studies used histopathological examination as the ground truth for a diagnosis of appendicitis, less robust techniques, such as the use of ICD10 codes, were also employed. Commonly used algorithms have included random forest models and artificial neural networks. High levels of model performance have been described for diagnosis of appendicitis and, to a lesser extent, subtypes of appendicitis (such as complicated versus uncomplicated appendicitis). Most studies did not provide all measures of model performance required to assess clinical usability.ConclusionsThe available evidence suggests the creation of prediction models for diagnosis and classification of appendicitis using AI techniques, is being increasingly explored. However, further implementation studies are required to demonstrate benefit in system or patient‐centred outcomes with model deployment and to progress these models to the stage of clinical usability.