Background Early screening and accurately identifying Acute Appendicitis (AA) among patients with undifferentiated symptoms associated with appendicitis during their emergency visit will improve patient safety and health care quality. The aim of the study was to compare models that predict AA among patients with undifferentiated symptoms at emergency visits using both structured data and free-text data from a national survey. Methods We performed a secondary data analysis on the 2005-2017 United States National Hospital Ambulatory Medical Care Survey (NHAMCS) data to estimate the association between emergency department (ED) patients with the diagnosis of AA, and the demographic and clinical factors present at ED visits during a patient’s ED stay. We used binary logistic regression (LR) and random forest (RF) models incorporating natural language processing (NLP) to predict AA diagnosis among patients with undifferentiated symptoms. Results Among the 40,441 ED patients with assigned International Classification of Diseases (ICD) codes of AA and appendicitis-related symptoms between 2005 and 2017, 655 adults (2.3%) and 256 children (2.2%) had AA. For the LR model identifying AA diagnosis among adult ED patients, the c-statistic was 0.72 (95% CI: 0.69–0.75) for structured variables only, 0.72 (95% CI: 0.69–0.75) for unstructured variables only, and 0.78 (95% CI: 0.76–0.80) when including both structured and unstructured variables. For the LR model identifying AA diagnosis among pediatric ED patients, the c-statistic was 0.84 (95% CI: 0.79–0.89) for including structured variables only, 0.78 (95% CI: 0.72–0.84) for unstructured variables, and 0.87 (95% CI: 0.83–0.91) when including both structured and unstructured variables. The RF method showed similar c-statistic to the corresponding LR model. Conclusions We developed predictive models that can predict the AA diagnosis for adult and pediatric ED patients, and the predictive accuracy was improved with the inclusion of NLP elements and approaches.
Systemic lupus erythematosus is a heritable autoimmune disease that predominantly affects young women. To improve our understanding of genetic etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-wide association studies, encompassing 12 systemic lupus erythematosus cohorts from 3 different ancestries and 10 genetically correlated autoimmune diseases, and identify 16 novel loci. We also perform transcriptome-wide association studies, computational drug repurposing analysis, and cell type enrichment analysis. We discover putative drug classes, including a histone deacetylase inhibitor that could be repurposed to treat lupus. We also identify multiple cell types enriched with putative target genes, such as non-classical monocytes and B cells, which may be targeted for future therapeutics. Using this newly assembled result, we further construct polygenic risk score models and demonstrate that integrating polygenic risk score with clinical lab biomarkers improves the diagnostic accuracy of systemic lupus erythematosus using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks.
Immune-mediated skin conditions (IMSCs) are a diverse group of autoimmune diseases associated with significant disease burden. Atopic dermatitis and psoriasis are among the most common IMSCs in the United States and have disproportionate impact on racial and ethnic minorities. African American patients are more likely to develop atopic dermatitis compared to their European American counterparts; and despite lower prevalence of psoriasis among this group, African American patients can suffer from more extensive disease involvement, significant post-inflammatory changes, and a decreased quality of life. While recent studies have been focused on understanding the heterogeneity underlying disease mechanisms and genetic factors at play, little emphasis has been put on the effect of psychosocial or psychological stress on immune pathways, and how these factors contribute to differences in clinical severity, prevalence, and treatment response across ethnic groups. In this review, we explore the heterogeneity of atopic dermatitis and psoriasis between African American and European American patients by summarizing epidemiological studies, addressing potential molecular and environmental factors, with a focus on the intersection between stress and inflammatory pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.