Abstract. Measurements of global and diffuse photosynthetically active
radiation (PAR) have been carried out on the island of Lampedusa, in the
central Mediterranean Sea, since 2002. PAR is derived from observations made
with multi-filter rotating shadowband radiometers (MFRSRs) by comparison with
a freshly calibrated PAR sensor and by relying on the on-site Langley plots.
In this way, a long-term calibrated record covering the period 2002–2016 is
obtained and is presented in this work. The monthly mean global PAR peaks in June, with about 160 W m−2, while
the diffuse PAR reaches 60 W m−2 in spring or summer. The global PAR
displays a clear annual cycle with a semi amplitude of about 52 W m−2.
The diffuse PAR annual cycle has a semi amplitude of about 12 W m−2. A simple method to retrieve the cloud-free PAR global and diffuse irradiances
in days characterized by partly cloudy conditions has been implemented and
applied to the dataset. This method allows retrieval of the cloud-free
evolution of PAR and calculation of the cloud radiative effect, CRE, for
downwelling PAR. The cloud-free monthly mean global PAR reaches
175 W m−2 in summer, while the diffuse PAR peaks at about
40 W m−2. The cloud radiative effect, CRE, on global and diffuse PAR is calculated as
the difference between all-sky and cloud-free measurements. The annual
average CRE is about −14.7 W m−2 for the global PAR and
+8.1 W m−2 for the diffuse PAR. The smallest CRE is observed in
July, due to the high cloud-free condition frequency. Maxima (negative for
the global, and positive for the diffuse component) occur in March–April and
in October, due to the combination of elevated PAR irradiances and high
occurrence of cloudy conditions. Summer clouds appear to be characterized by
a low frequency of occurrence, low altitude, and low optical thickness,
possibly linked to the peculiar marine boundary layer structure. These
properties also contribute to produce small radiative effects on PAR in
summer. The cloud radiative effect has been deseasonalized to remove the influence
of annual irradiance variations. The monthly mean normalized CRE for global
PAR can be well represented by a multi-linear regression with respect to
monthly cloud fraction, cloud top pressure, and cloud optical thickness, as
determined from satellite MODIS observations. The behaviour of the normalized
CRE for diffuse PAR can not be satisfactorily described by a simple
multi-linear model with respect to the cloud properties, due to its non-linear dependency, in particular on the cloud optical depth. The analysis
suggests that about 77 % of the global PAR interannual variability may be
ascribed to cloud variability in winter.