“…In eqs –, ρ̅ i ( r ) is the weighted density and can be written as normalρ̅ i ( r ) = ∑ j = 1 2 ∫ normalρ j ( r ′ ) normalω i j normalatt ( false| boldr − boldr ′ false| ) .25em normald boldr ′ where ω ij att ( r ) is the weight function normalω i j att ( r ) = c i j att ( r ) ∫ c i j att false( r false) .25em normald boldr Here C ij att ( r ) is the direct correlation function (DCF) of the equilibrium interfacial density, i.e., (ρ l + ρ v )/2, from attractive contribution . In eqs –, k 1, ij , k 2, ij , z 1, ij , z 2, ij are constants related to the LJ potential parameters, R i = 2Σ j x j d ij – Σ i Σ i x i x j d ij , g 0, ij ( R ij ) and g 1, ij ( R ij ) are the radial distribution functions (RDFs) of hard-sphere and first-order perturbation terms at contact, and G 0, ij ( z ij )and G 1, ij ( z ij ) are the corresponding Laplace transforms …”