The microstructure of the as-cast 7A55 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analysis. The results indicate that the microstructure of the as-cast 7A55 aluminum alloy mainly consists of the dendritic network of aluminum solid solution, Al/AlZnMgCu eutectic phases, and intermetallic compounds MgZn 2 , Al 2 CuMg, Al 7 Cu 2 Fe, and Al 23 CuFe 4 . After homogenization at 470°C for 48 h, Al/AlZnMgCu eutectic phases are dissolved into the matrix, and a small amount of high melting-point secondary phases were formed, which results in an increasing of the starting melting temperature of 7A55 aluminum alloy. The high melting-point secondary phases were eliminated mostly when the homogenization time achieved to 72 h. Therefore, the reasonable homogenization heat treatment process for 7A55 aluminum alloy ingots was chosen as 470°C/72 h.