2019
DOI: 10.1007/978-3-030-24986-1_32
|View full text |Cite
|
Sign up to set email alerts
|

Prediction of Power Output for Combined Cycle Power Plant Using Random Decision Tree Algorithms and ANFIS

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 12 publications
0
3
0
1
Order By: Relevance
“…sedangkan tekanan atmosfer dapat mempengaruhi kerja turbin gas dan turbin uap. Turbin gas dapat mengalami penurunan efisiensi pada tekanan tinggi, sementara turbin uap membutuhkan tekanan yang cukup untuk menghasilkan energy [3]. Pemahaman yang baik tentang faktor lingkungan dapat membantu dalam menyesuaikan operasional untuk memaksimalkan kinerja kedua jenis turbin.…”
Section: Pendahuluanunclassified
“…sedangkan tekanan atmosfer dapat mempengaruhi kerja turbin gas dan turbin uap. Turbin gas dapat mengalami penurunan efisiensi pada tekanan tinggi, sementara turbin uap membutuhkan tekanan yang cukup untuk menghasilkan energy [3]. Pemahaman yang baik tentang faktor lingkungan dapat membantu dalam menyesuaikan operasional untuk memaksimalkan kinerja kedua jenis turbin.…”
Section: Pendahuluanunclassified
“…However, most of the existing statistical prediction models are linear models, rendering it difficult to forecast long-term electricity supply [6]. The performance of a power plant operating at full load can be affected by a variety of factors such as ambient temperature, atmospheric pressure, relative humidity, exhaust steam pressure, and so on [5], which makes it challenging to create a reliable mathematical model for CCPPs. Various techniques have been used to predict power generation, including physical, statistical, and machine learning methods.…”
Section: Literature Reviewmentioning
confidence: 99%
“…The RMSE value obtained with the abovementioned MLP is 4.305, which is considerably less than the MLP provided in the existing literature, but still greater than numerous complicated algorithms, such as K star and tree-based algorithms. Bandić et al [22] described the random forest algorithm for estimating the output power of a CCPP at full load. The analysis is conducted between twofold where in the first fold all the features are utilized, whereas in the second fold only three features are used.…”
Section: Related Workmentioning
confidence: 99%