The exceptionally rich information content of nuclear magnetic resonance (NMR) spectra is routinely used to identify and characterize molecules and molecular interactions in a wide range of applications, including clinical biomarker discovery, drug discovery, environmental chemistry, and metabolomics. The set of peak positions and intensities from a reference NMR spectrum generally serves as the identifying signature for a compound. Reference spectra normally are collected under specific conditions of pH, temperature, and magnetic field strength, because changes in conditions can distort the identifying signatures of compounds. A spin system matrix that parametrizes chemical shifts and coupling constants among spins provides a much richer feature set for a compound than a spectral signature based on peak positions and intensities. Spin system matrices expand the applicability of NMR spectral libraries beyond the specific conditions under which data were collected. In addition to being able to simulate spectra at any field strength, spin parameters can be adjusted to systematically explore alterations in chemical shift patterns due to variations in other experimental conditions, such as compound concentration, pH, or temperature. We present methodology and software for efficient interactive optimization of spin parameters against experimental 1D-1H NMR spectra of small molecules. We have used the software to generate spin system matrices for a set of key mammalian metabolites and are also using the software to parametrize spectra of small molecules used in NMR-based ligand screening. The software, along with optimized spin system matrix data for a growing number of compounds, is available from http://gissmo.nmrfam.wisc.edu/.