Fast accurate predictions of 1H NMR spectra of organic compounds play an important role in structure validation, automatic structure elucidation, or calibration of chemometric methods. The SPINUS program is a feed-forward neural network (FFNN) system developed over the last 8 years for the prediction of 1H NMR properties from the molecular structure. It was trained using a series of empirical proton descriptors. Ensembles of FFNNs were incorporated into Associative Neural Networks (ASNN), which correct a prediction on the basis of the observed errors for the k nearest neighbors in an additional memory. Here we show a procedure to estimate coupling constants with the ASNNs trained for chemical shifts-a second memory is linked consisting of coupled protons and their experimental coupling constants. An ASNN finds the pairs of coupled protons most similar to a query, and these are used to estimate coupling constants. Using a diverse general data set of 618 coupling constants, mean absolute errors of 0.6-0.8 Hz could be achieved in different experiments. A Web interface for 1H NMR full-spectrum prediction is available at http://www.dq.fct.unl.pt/spinus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.