We study the morphology of the chain-like aggregates formed when a external constant and uniaxial magnetic field is applied to a magneto-rheological (MR) fluid. In order to characterize the conformation of the aggregates, we study the evolution of various fractal dimensions during aggregation and disaggregation processes (i.e., when the applied field is switched on and off), using video-microscopy and image analysis. Experiments have been performed by varying the values of two external parameters: the magnetic field amplitude and particle concentration. We found that the box-counting dimension, related with how the aggregates occupy the surrounding space, depends on the ratio R 1 /R 0 . During the first stage of the disaggregation process, when the particles are moving by Brownian motion inside the aggregate, Family-Vicsek scaling function is verified.