Heart Disease as cardiovascular disease is the leading cause of death for both men and women. It is the major cause of morbidity and mortality in present society. Therefore, researchers are working to help health care professionals in diagnosing process by using data mining techniques. Although the health care industry is richer in the database this data is not properly mined in order to discover hidden patterns and can able to make decisions based on these patterns. The major goal of this learning refers the extraction of hidden layers by applying numerous data mining techniques that probably give remarkable results in order to ensure the presence of cardiovascular disease among peoples. Data mining classification techniques are used to discover these patterns for research in medical industry. The dataset containing 13 attributes has analyzed for prediction system. The dataset contains some commonly used medical terms like blood pressure, cholesterol level, chest pain and 11 other attributes used to predict cardiovascular disease. The most common and effective classification techniques that are used in mining process are Verdict Tree commonly known as Decision Tree, Extra Trees Classifier, Random Forest, Support Vector Machine, Naive Bays and Logistic Regression has analyzed in this paper. Diagnosing and controlling ratio of deaths from cardiovascular disease Extra classifier trees consider is the best approach. We evaluate these prediction models by using evaluation parameters which are Accuracy, Precision, Recall, and F1-score. As per our experimental results shows accuracy of Extra trees classifier, Logistic Model tree classifier, support vector machine, and naive bays classifiers are 90%, 88%, 87%, 86% respectively. So as per our experiment analysis Extra Tree classifier with highest accuracy considered best approach for predication cardiovascular disease.