Abstract. We propose a view-constrained latent variable model for multi-view facial expression classification. In this model, we first learn a discriminative manifold shared by multiple views of facial expressions, followed by the expression classification in the shared manifold. For learning, we use the expression data from multiple views, however, the inference is performed using the data from a single view. Our experiments on data of posed and spontaneously displayed facial expressions show that the proposed approach outperforms the state-of-the-art methods for multi-view facial expression classification, and several state-of-theart methods for multi-view learning.