In chemical process applications, model predictive control (MPC) effectively deals with input and state constraints during transient operations. However, industrial PID controllers directly manipulates the actuators, so they play the key role in small perturbation robustness. This paper considers the problem of augmenting the commonplace PID with the constraint handling and optimization functionalities of MPC. First, we review the MPC framework, which employs a linear feedback gain in its unconstrained region. This linear gain can be any preexisting multi-loop PID design, or based on the two stabilizing PI/PID designs for multivariable systems proposed in the paper. The resulting controller is a feedforward PID mapping, a straightforward form without the need of tuning PID to fit an optimal input. The parametrized solution of MPC under constraints further leverages a familiar PID gain scheduling structure. Steady state robustness is achieved along with the PID design so that additional robustness analysis is avoided.