In predictive control, control calculations are done such that the difference between the desired and the predicted response of the process is minimized. The number of points on the prediction horizon at which the error is minimized and the number of future control moves considered affect the on-line computational effort involved in the solution of the constrained optimization problem. Earlier papers have shown that the control performance obtained using the DMC algorithm can also be obtained by using a simplified algorithm where the error is minimized at one point and one future control move is calculated. Because of its computational advantages, the simplified algorithm is analyzed further in this paper. Its transfer function is compared with the transfer function of the DMC algorithm. Characteristic equations to select tuning parameters are presented. The paper also compares the robust stability of the simplified and the DMC algorithms on SISO and MIMO process models. The results provide additional support to the viability of the simplified algorithm and thus indicate that it is possible for some processes to benefit from predictive control with only modest computational resources.Dans le contrale predictif, les calculs de contrBle sont effectuks de sorte que la diffkrence entre la rCponse de procCdC souhaitCe et la rCponse predite est minimisbe. Le nombre de points sur I'horizon de prkdiction auquel I'erreur est minimisCe et le nombre de dCplacements de contrdle futurs considirks influe sur l'effort de calcul en ligne necessaire a la rtsolution du problkme d'optimisation avec contrainte. Les travaux antkrieurs montrent que la performance de contrble obtenue par l'algorithme DMC peut Cgalement Ctre obtenue au moyen d'un algorithme simplifiC ou l'erreur est minimisee a un point et oh un deplacement de contrale futur est calcule. En raison de ses avantages sur le plan du calcul, l'algorithme simplifie est analyse plus loin dans le present article. Sa fonction de transfert est comparke a la fonction de transfert de l'algorithme DMC. Les equations caractiristiques sont prCsentees pour la sClection des paramktres de reglage. On compare Cgalement dans l'article la robustesse de la stabilite de I'algorithme simplifie et du DMC sur les mod&les de proddC SISO et MIMO. Les rksultats confirment la viabilitt de l'algorithme sirn-plifiC et indiquent de cette facon qu'il est possible de btneficier du contrble predictif dans certains procCdCs avec des ressources en calcul modestes.Keywords: robustness, predictive control, distillation control. ode1 predictive control has been popular for process M control because of its abilities to deal with characteristics, such as, dead time, inverse response, interactions between loops, constraints. Although a number of successful applications of the approach have been reported, the approach has becn under investigation for possible improvements. One of the areas under investigation has been the selection of the number of points on the prediction horizon at which the error is minimized (...