ObjectiveDespite the recurring nature of the disease process in many psychiatric patients, individual careers and time to readmission rarely have been analysed by statistical models that incorporate sequence and velocity of recurrent hospitalisations. This study aims at comparing four statistical models specifically designed for recurrent event history analysis and evaluating the potential impact of predictor variables from different sources (patient, treatment process, social environment).MethodThe so called Andersen-Gil counting process model, two variants of the conditional models of Prentice, Williams, and Peterson (gap time model, conditional probability model), and the so called frailty model were applied to a dataset of 17’415 patients observed during a 12 years period starting from 1996 and leading to 37’697 psychiatric hospitalisations. Potential prognostic factors stem from a standardized patient documentation form.ResultsEstimated regression coefficients over different models were highly similar, but the frailty model best represented the sequentiality of individual treatment careers and differing velocities of disease progression. It also avoided otherwise likely misinterpretations of the impact of gender, partnership, historical time and length of stay. A widespread notion of psychiatric diseases as inevitably chronic and worsening could be rejected. Time in community was found to increase over historical time for all patients. Most important protective factors beyond diagnosis were employment, partnership, and sheltered living situation. Risky conditions were urban living and a concurrent substance use disorder.ConclusionPrognostic factors for course of diseases should be determined only by statistical models capable of adequately incorporating the recurrent nature of psychiatric illnesses.