The device performance of microelectromechanical system (MEMS) inertial sensors such as accelerometers and gyroscopes is strongly influenced by the stress developed in the silicon die during packaging processes. This is due to the die warpage in the presence of the stress. It has previously been shown that most of the stress is generated during a die-attach process. In this study, we employ both experimental and theoretical approaches to gain a better understanding in a stress development induced during the packaging processes of a small silicon die (3.5 3.5 mm 2 ). The former approach is accompanied with an optical profilometer while the latter part by a finite element analysis and an analytical model. A specific emphasis is given to the effects of structural parameters such as the die-attach adhesive thickness and material properties on the stress development. The results from all three approaches show good agreement, in that more compliant and thicker adhesives offer great relief in the stress development, as well as bend the die convex downward from its central location. A stress model proposed from this study not only provides a diagnostic tool for very small stress-sensitive devices, but it will also present a design tool for low-stress MEMS packaging systems.Index Terms-Adhesives, die-attach, die stress, finite element analysis (FEA), microelectromechanical system (MEMS) packaging, profilometer, simulation, warpage.