The rise of model-based and machine learning methods have created increasingly realistic opportunities to implement personalized, patient-specific mechanical ventilation (MV) in the ICU. These methods require monitoring of real-time patient ventilation waveform data (VWD) during MV treatment. However, there are relatively few non-invasive and/or non-proprietary systems to monitor and record patientspecific lung condition in real-time. In this paper, we present a CARE network data acquisition and monitoring system (CARENet) to automate data collection and to remotely monitor patient-specific lung condition and ventilation parameters. The automated system acquires VWD from a mechanical ventilator using a data acquisition device (DAQ), stores data in network-attached storage (NAS), and processes VWDs via a data management platform (DMP) web application. The web application enables real-time and retrospective modelbased monitoring and analysis of clinical MV data. In particular, CARENet provides detailed breath-by-breath patient-specific respiratory mechanics, as well as the overall trends assessing changes in patient condition. Validation testing with a retrospective data set illustrated how breath-to-breath and time-varying patientventilator interaction during MV can be monitored, and, in turn, can be used to guide MV treatment. The network data acquisition system design presented is low-cost, open, and enables continuous, automated, scalable, realtime collection and analysis of waveform data, to help improve decision making, care, and outcomes in MV.