2023
DOI: 10.59697/jtik.v7i1.66
|View full text |Cite
|
Sign up to set email alerts
|

Prediksi Kualitas Udara Menggunakan Xgboost Dengan Synthetic Minority Oversampling Technique (Smote) Berdasarkan Indeks Standar Pencemaran Udara (Ispu)

Abstract: Polusi udara memperburuk situasi di daerah berpenduduk. Kota-kota besar di Indonesia juga menderita polusi udara. Kualitas udara telah berubah secara signifikan sebagai akibat dari peningkatan lalu lintas, konsumsi material kendaraan, pertumbuhan industri, pembakaran lahan, dan pengumpulan sampah. Diperlukan pengukuran dan klasifikasi kualitas udara yang akurat. Hasil klasifikasi yang akurat membantu dalam pembentukan peraturan negara. Untuk mencapai kriteria kualitas udara hidup, kami bermaksud mengelola pema… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 0 publications
0
2
0
Order By: Relevance
“…This study found that the distribution of air data was unbalanced, causing the random forest classification results to decrease. Research [18] Prediction of air quality using Extreme Gradient Boosting (XGBoost) combined with the SMOTE method based on the Air Pollution Standard Index (ISPU), the dataset used is air quality for the last five years based on the Jakarta Environment Agency using a publication frequency of 1-month measurement with the parameter used being PM10, SO2, CO, O3, NO2, and labels, the dataset experiences a class imbalance. Hence, it uses the SMOTE technique to overcome it, and the accuracy results produced by the confusion matrix model are accuracy, precision, recall, f1-score, and ROC AUC.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…This study found that the distribution of air data was unbalanced, causing the random forest classification results to decrease. Research [18] Prediction of air quality using Extreme Gradient Boosting (XGBoost) combined with the SMOTE method based on the Air Pollution Standard Index (ISPU), the dataset used is air quality for the last five years based on the Jakarta Environment Agency using a publication frequency of 1-month measurement with the parameter used being PM10, SO2, CO, O3, NO2, and labels, the dataset experiences a class imbalance. Hence, it uses the SMOTE technique to overcome it, and the accuracy results produced by the confusion matrix model are accuracy, precision, recall, f1-score, and ROC AUC.…”
Section: Related Workmentioning
confidence: 99%
“…The development of more traditional gradient-boosting methods has resulted in more efficient implementations and more accurate predictions. A variant known as Extreme Gradient Boosting was also introduced to increase the model's performance even more [18],…”
Section: Xgboost Classificationmentioning
confidence: 99%