Abstract. Light Charged Particle emission mechanisms were studied for different mass entrance channel nuclear reactions. The 300, 400, 500 MeV 64 Ni + 68 Zn and 130, 250 MeV 16 O + 116 Sn reactions were measured at the Legnaro National Laboratory using the beams from the TANDEM-ALPI acceleration system. Light Charged Particles were measured in coincidence with Evaporation Residues and their spectra were analyzed using the global moving source fit technique. The characterization of different emission sources (evaporative, pre-equilibrium, break-up) is discussed. The behavior of pre-equilibrium emission as a function of projectile energy, excitation energy and mass-asymmetry in the entrance channel was studied, evaluating the energy, mass and charge lost by the composite systems and using Griffin exciton model for the pre-equilibrium neutron emission. The present results are compared with the systematics of the asymmetric mass entrance channel reactions. The present work shows that also at the onset the pre-equilibrium emission depends not only on the projectile velocity but also on the reaction entrance channel mass-asymmetry. The first attempt of the particle spectra analysis using the Griffin exciton model is demonstrated for the case of proton emission in the 130 MeV 16 O + 116 Sn reaction.