Drug abuse is a serious problem worldwide. Owing to intermittent intake of certain substances and the early inconspicuous clinical symptoms, this brings huge challenges for timely diagnosing addiction status and preventing substance use disorders (SUDs). As a non-invasive technique, neuroimaging can capture neurobiological signatures of abnormality in multiple brain regions caused by drug consumption in each clinical stage, like parenchymal morphology alteration as well as aberrant functional activity and connectivity of cerebral areas, making it realizable to diagnosis, prediction and even preemptive therapy of addiction. Machine learning (ML) algorithms primarily used for classification have been extensively applied in analysing medical imaging datasets. Significant neurobiological characteristics employed and revealed by classifiers were used to diagnose addictive states and predict initiation and vulnerability to drug usage, treatment abstinence, relapse and resilience of addicts and the risk of SUD. In this review, we summarize application of ML methods in neuroimaging focusing on addicts' diagnosis of clinical status and risk prediction and elucidate the discriminative neurobiological features from brain electrophysiological, morphological and functional perspectives that contribute most to the classifier, finally highlighting the auxiliary role of ML in addiction treatment.