Continental North America has been found to be a carbon (C) sink over recent decades by multiple studies employing a variety of estimation approaches. However, several key questions and uncertainties remain with these assessments. Here we used results from an ensemble of 19 state-of-the-art dynamic global vegetation models from the TRENDYv9 project to improve these estimates and study the drivers of its interannual variability. Our results show that North America has been a C sink with a magnitude of 0.37 ± 0.38 (mean and one standard deviation) PgC year −1 for the period 2000-2019 (0.31 and 0.44 PgC year −1 in each decade); split into 0.18 ± 0.12 PgC year −1 in Canada (0.15 and 0.20), 0.16 ± 0.17 in the United States (0.14 and 0.17), 0.02 ± 0.05 PgC year −1 in Mexico (0.02 and 0.02) and 0.01 ± 0.02 in Central America and the Caribbean (0.01 and 0.01). About 57% of the new C assimilated by terrestrial ecosystems is allocated into vegetation, 30% into soils, and 13% into litter. Losses of C due to fire account for 41% of the interannual variability of the mean net biome productivity for all North America in the model ensemble. Finally, we show that drought years (e.g., 2002) have the potential to shift the region to a small net C source in the simulations (−0.02 ± 0.46 PgC MURRAY-TORTAROLO ET AL.