Control of the size and shape of molecular assemblies on the nanometer scale in aqueous solutions is very important for the regulation of biological functions. Among the well-defined supramolecular structures of organic amphiphiles, one-dimensional nanofibers have attracted much attention because of their potential applications in biocompatible materials. Although much progress has been made in the field of self-assembled nanofibers, the ability to control the fiber length remains limited. The approach for control of the fiber length presented herein overcomes this limitation through the coassembly of amphiphilic rod-coil molecules in which the crystallinity of the aromatic segment can be regulated by π-π stacking interactions. The introduction of carbohydrate segments into the fiber exterior endows the nanofibers with the ability to adhere to bacterial cells. Notably, the fiber length systematically regulates the agglutination and proliferation of bacterial cells exposed to these fibers.
We demonstrate the self-assembly of tripeptide amphiphiles into spherical hollow capsules from linear nanoribbons via control of the molecular packing. We achieved a transition of arrangement from anisotropic to isotropic by an elaborate design of the molecular architecture.
We report a simple, direct fluorometric assay based on graphene oxide (GO) for RNA polymerase-mediated RNA synthesis. In principle, fluorescent peptide nucleic acid (PNA) probes were designed, and annealed with RNA products and the resultant RNA-PNA hybrids induced the recovery of fluorescence intensity of the PNA probes adsorbed onto the GO surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.