Unmanned aerial systems (UAS) provide two main functions with regards to bridge inspections: (1) high-quality digital imaging to detect element defects; (2) spatial point cloud data for the reconstruction of 3D asset models. With UAS being a relatively new inspection method, there is little in the way of existing framework for storing, processing and managing the resulting inspection data. This study has proposed a novel methodology for a digital information model covering data acquisition through to a 3D GIS visualisation environment, also capable of integrating within a bridge management system (BMS). Previous efforts focusing on visualisation functionality have focused on BIM and GIS as separate entities, which has a number of problems associated with it. This methodology has a core focus on the integration of BIM and GIS, providing an effective and efficient information model, which provides vital visual context to inspectors and users of the BMS. Three-dimensional GIS visualisation allows the user to navigate through a fully interactive environment, where element level inspection information can be obtained through point-and-click operations on the 3D structural model. Two visualisation environments were created: a web-based GIS application and a desktop solution. Both environments develop a fully interactive, user-friendly model which have fulfilled the aims of coordinating and streamlining the BMS process.