Experiments were carried out to investigate the removal of SO2 and NOx from simulated glass manufacturing industry flue gas containing O2, N2, NO, NO2, CO2, SO2 and H2O using a sub-microsecond pulsed dielectric barrier discharge (DBD) at atmospheric pressure. Removal efficiencies of SO2 and NOx (NO+NO2) were achieved as a function of gas temperature for two specific energies and two initial NO, NO2 and SO2 concentrations. The higher SO2 and NOx removal efficiencies were achieved in a gas stream containing 163 ppm of SO2, 523 ppm of NO, 49 ppm of NO2, 14% of CO2, 8% of O2, 16% of H2O and N2 as balance. The experimental results were evaluated using the energy cost or W-value (eV/molecule removed). About 100% of SO2 and 36% of NOx were removed at a gas temperature of 100 °C with an energy cost of about 45 eV/molecule removed and 36 eV/molecule removed, respectively. These results indicate that DBD plasmas have the potential to remove SO2 and NOx from gas streams without additives.