Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The idea of Africa Alive Corridors (AAC) evolved from Gondwana geological mapping to a comprehensive, more inclusive and dynamic approach to transdisciplinary research known as Earth Stewardship Science. Twenty designated corridors explore the geo-biological and cultural heritage of different regions of Africa over various periods, from deep time to the Anthropocene. Each corridor reveals a specific lens through which to investigate some of the rich scientific narratives embedded within it. The concept also facilitates learning and knowledge exchange across numerous disciplines: archeology, geology, geophysics, oceanography, glaciology, biology, botany, ecology, agriculture, engineering, spatial statistics, social sciences, and the humanities. This contribution analyses ten selected corridors in southern and western Africa, the Congo Basin, East Africa, and Madagascar. The various research themes explored include Earth impact hazard, origins of humankind, Snowball Earth, coastal food systems and conservation, the biogeography of lemurs, human settlement dynamics in Cameroon, tectonically linked earthquake occurrences in Algeria and Morocco, modelling land-use changes in the Western Rift Valley, trades and civilizations of the Mali Empire, Mbira music, and contemporary art. The ongoing work on these—and ten other—corridors has considerable potential to host new international collaborations to develop the links between society and natural sciences in Africa. Ultimately, AAC will benefit all stakeholders, especially the youth, in understanding and responding to societal needs and current global challenges.
The idea of Africa Alive Corridors (AAC) evolved from Gondwana geological mapping to a comprehensive, more inclusive and dynamic approach to transdisciplinary research known as Earth Stewardship Science. Twenty designated corridors explore the geo-biological and cultural heritage of different regions of Africa over various periods, from deep time to the Anthropocene. Each corridor reveals a specific lens through which to investigate some of the rich scientific narratives embedded within it. The concept also facilitates learning and knowledge exchange across numerous disciplines: archeology, geology, geophysics, oceanography, glaciology, biology, botany, ecology, agriculture, engineering, spatial statistics, social sciences, and the humanities. This contribution analyses ten selected corridors in southern and western Africa, the Congo Basin, East Africa, and Madagascar. The various research themes explored include Earth impact hazard, origins of humankind, Snowball Earth, coastal food systems and conservation, the biogeography of lemurs, human settlement dynamics in Cameroon, tectonically linked earthquake occurrences in Algeria and Morocco, modelling land-use changes in the Western Rift Valley, trades and civilizations of the Mali Empire, Mbira music, and contemporary art. The ongoing work on these—and ten other—corridors has considerable potential to host new international collaborations to develop the links between society and natural sciences in Africa. Ultimately, AAC will benefit all stakeholders, especially the youth, in understanding and responding to societal needs and current global challenges.
Large earthquakes have affected Gulf of Aqaba with magnitudes ranging from 6 to 7.3 as examples in years 1068, 1212, 1588 AD during historical records. In recent seismicity, a large earthquake occurred on 22 November 1995, of Mw 7.3 that triggered a small tsunami that affected the port of Nuweiba in Egypt, Eilat and Aqaba beaches. The epicenter of this earthquake has been occurred between the Aragonese and Eilat basin at the central part of the Gulf of Aqaba. The long low seismicity, especially for significant events at the southern Arnona fault, manifested its act as possible seismic gap with an expected a future rupture of Mw 7.2 earthquake. This event will affect the three countries Egypt, Saudi Arabia, Jordon Israel coastal cities using two scenarios. We used Mirone version 3.10 software to calculate the maximum wave height at the Gulf of Aqaba cities. The main two tested scenarios depend on the 22 November 1995 which was earthquake located at the Aragonese fault and the 1068 or 1839 AD earthquake with epicenters at Arnona fault at Aqaba basins. The Nov.,1995 scenario will produce a maximum wave height of 2.10 meters in the Nuweiba and 0.5 meters at Dahab coastal cities and 0.7 meters at Eilat city. The Arnona fault second scenario will produced a maximum wave height of 1.2 m Dahab, 1.8 m Nuweiba coastal cites at Egypt and 2.10 meters at Magna Saudi Arabia with less wave height to 1.2 m at Eilat city and Aqaba at Israel and Jordon respectively.
Although tsunamis are dispersive water waves, hazard maps for earthquake-generated tsunamis neglect dispersive effects because the spatial dimensions of tsunamis are much greater than the water depth, and dispersive effects are generally small. Furthermore, calculations that include non-dispersive effects tend to predict higher tsunamis than ones that include dispersive effects. Although non-dispersive models may overestimate the tsunami height, this conservative approach is acceptable in disaster management, where the goal is to save lives and protect property. However, we demonstrate that offshore frequency dispersion amplifies tsunamis caused by outer-rise earthquakes, which displace the ocean bottom downward in a narrow area, generating a dispersive short-wavelength and pulling-dominant (water withdrawn) tsunami. We compared observational evidence and calculations of tsunami for a 1933 Mw 8.3 outer-rise earthquake along the Japan Trench. Dispersive (Boussinesq) calculations predicted significant frequency dispersion in the 1933 tsunami. The dispersive tsunami deformation offshore produced tsunami inundation heights that were about 10% larger than those predicted by non-dispersive (long-wave) calculations. The dispersive tsunami calculations simulated the observed tsunami inundation heights better than did the non-dispersive tsunami calculations. Contrary to conventional practice, we conclude that dispersive calculations are essential when preparing deterministic hazard maps for outer-rise tsunamis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.