Background and ObjectivesHeat stress and hyperthermia are common findings in sudden infant death syndrome (SIDS) victims. It has been suggested that thermal stress can increase the risk of SIDS directly via lethal hyperthermia or indirectly by altering autonomic functions. Major changes in sleep, thermoregulation, cardiovascular function, and the emergence of circadian functions occur at the age at which the risk of SIDS peaks—explaining the greater vulnerability at this stage of development. Here, we review the literature data on (i) heat stress and hyperthermia as direct risk factors for SIDS, and (ii) the indirect effects of thermal loads on vital physiological functions.ResultsVarious situations leading to thermal stress (i.e., outdoors temperatures, thermal insulation from clothing and bedding, the prone position, bed-sharing, and head covering) have been analyzed. Hyperthermia mainly results from excessive clothing and bedding insulation with regard to the ambient thermal conditions. The appropriate amount of clothing and bedding thermal insulation for homeothermia requires further research. The prone position and bed-sharing do not have major thermal impacts; the elevated risk of SIDS in these situations cannot be explained solely by thermal factors. Special attention should be given to brain overheating because of the head's major role in body heat losses, heat production, and autonomic functions. Thermal stress can alter cardiovascular and respiratory functions, which in turn can lead to life-threatening events (e.g., bradycardia, apnea with blood desaturation, and glottal closure). Unfortunately, thermal load impairs the responses to these challenges by reducing chemosensitivity, arousability, and autoresuscitation. As a result, thermal load (even when not lethal directly) can interact detrimentally with vital physiological functions.ConclusionsWith the exception of excessive thermal insulation (which can lead to lethal hyperthermia), the major risk factors for SIDS appears to be associated with impairments of vital physiological functions when the infant is exposed to thermal stress.