We show that prenatal CS exposure increases the likelihood of gasplike respiration and provide the first experimental evidence that the combined effects of prenatal CS exposure and hyperthermia dramatically prolong the time required for neonates to return to eupneic breathing after hypoxia. These observations provide important evidence of how prenatal CS exposure, hypoxic episodes, and hyperthermia might place infants at higher risk for sudden infant death syndrome.
Prenatal cigarette smoke (CS) exposure, in combination with hypoxia and/or hyperthermia can lead to gasping and attenuated recovery from hypoxia in 7 days old rat pups. We studied 95 unanesthetized spontaneously breathing 14 days old rat pups to investigate if the destabilizing effects of increased ambient temperature and prenatal CS exposure on respiratory control observed in 7 days old rats were still evident at day 14. This postnatal age was selected as it is beyond the analogous risk period for SIDS in human. Furthermore, we investigated if the breathing responses to hypercapnia are affected by prenatal CS exposure. Since high ambient (HA) temperature can lead to gasping and aberrant respiratory control, we recorded respiratory patterns at low (24-25°C) and high (29-30°C) ambient temperatures, and under hypoxic or hypercapnic states. No gasping was observed in 14 days old rat pups. During hypoxia, breathing frequency increased in the CS-exposed group under low and HA temperatures. Rectal temperature decreased only in the sham group in response to low ambient temperature hypoxia. At HA temperature, breathing frequency increased in both sham and CS-exposed groups during hypercapnia, however, it remained elevated during washout period only in the sham group. We demonstrate that prenatal CS exposure continues to have profound effects on respiratory and thermoregulatory responses to hypoxia and hypercapnia at day 14. The attenuated respiratory and thermoregulatory responses to acute hypoxia and hypercapnia on day 14 demonstrate a strong interaction between CS exposure, respiratory control, and thermoregulation during postnatal maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.