An alkoxide-promoted method for the synthesis of ketones from readily available esters and benzyldiboronates is described. The synthetic method is compatible with a host of sterically differentiated alkyl groups, alkenes, acidic protons α to carbonyl groups, tertiary amides and aryl rings having common organic functional groups. With esters bearing α-stereocenters, high enantiomeric excess was maintained during ketone formation, establishing minimal competing racemization by deprotonation. Monitoring the reaction between benzyldiboronate and LiO t Bu in THF at 23 °C allowed for the identification of products arising from deborylation to form an αboryl carbanion, deprotonation, and alkoxide addition to form an "-ate" complex. Addition of 4trifluoromethylbenzoate to this mixture established the x-boryl carbanion as the intermediate responsible for C-C bond formation and ultimately ketone synthesis. Elucidation of the role of this intermediate leveraged additional bond-forming chemistry and enabled the one-pot synthesis of ketones with α-halogen atoms and quaternary centers with four-different carbon substituents.