Background: The aim of this study was to compare the effects of currently available preoperative localization methods, including semi-rigid single hook-wire, double-thorn hook-wire, and microcoil, in localizing the pulmonary nodules, thus to select the best technology to assist video-assisted thoracoscopic surgery (VATS) for small ground glass opacities (GGO).Methods: Preoperative CT-guided localizing techniques including semi-rigid single hook-wire, doublethorn hook-wire and microcoil were used in re-aerated fresh swine lung for location experiments. The advantages and drawbacks of the three positioning technologies were compared, and then the most optimal technique was used in patients with GGO. Technical success and post-operative complications were used as primary endpoints.Results: All three localizing techniques were successfully performed in the re-aerated fresh swine lung.The median tractive force of semi-rigid single hook wire, double-thorn hook wire and microcoil were 6.5, 4.85 and 0.2 N, which measured by a spring dynamometer. The wound sizes in the superficial pleura, caused by unplugging the needles, were 2 mm in double-thorn hook wire, 1 mm in semi-rigid single hook and 1 mm in microcoil, respectively. In patients with GGOs, the semi-rigid hook wires localizations were successfully performed, without any complication that need to be intervened. Dislodgement was reported in one patient before VATS. No major complications related to the preoperative hook wire localization and VATS were observed.
Conclusions:We found from our localization experiments in the swine lung that, among the commonly used three localization methods, semi-rigid hook wire showed the best operability and practicability than doublethorn hook wire and microcoil. Preoperative localization of small pulmonary nodules with single semi-rigid hook wire system shows a high success rate, acceptable utility and especially low dislodgement in VATS.
IntroductionThe widespread application of low-dose computed tomography (LDCT) has led to a great increase in the identification rate of small pulmonary nodules, especially small ground glass opacities (GGO). GGO is defined as a hazy opacity that does not obscure underlying bronchial structures or pulmonary vessels on CT scans (1). It has been reported that 33-60% GGO was malignant carcinoma when the nodules size ranges from 11-20 mm, while the malignant rate increase to 64-82% when the size grows up greater than 20 mm (2). Although the identification of pulmonary nodules could be effectively accomplished by many imaging modalities, including high-resolution CT, positron emission tomography (PET/CT), and bronchoscopy, whereas the identification of lesions with GGO remains difficult. Thus, more reliable diagnosis and therapeutic options for uncertain pulmonary nodules are still in need (3).Video-assisted thoracoscopic surgery (VATS) is less invasive in diagnosing and treating thoracic lesions, thus how to locate and mark the nodules more precisely before the VATS becomes one of the most important ...