To meet the needs of clinical medicine, bone tissue engineering is developing dynamically. Scaffolds for bone healing might be used as solid, preformed scaffolding materials, or through the injection of a solidifiable precursor into the defective tissue. There are miscellaneous biomaterials used to stimulate bone repair including ceramics, metals, naturally derived polymers, synthetic polymers, and other biocompatible substances. Combining ceramics and metals or polymers holds promise for future cures as the materials complement each other. Further research must explain the limitations of the size of the defects of each scaffold, and additionally, check the possibility of regeneration after implantation and resistance to disease. Before tissue engineering, a lot of bone defects were treated with autogenous bone grafts. Biodegradable polymers are widely applied as porous scaffolds in bone tissue engineering. The most valuable features of biodegradable polyurethanes are good biocompatibility, bioactivity, bioconductivity, and injectability. They may also be used as temporary extracellular matrix (ECM) in bone tissue healing and regeneration. Herein, the current state concerning polyurethanes in bone tissue engineering are discussed and introduced, as well as future trends.