BackgroundIn our previous study, we successfully developed 3-D scaffolds prepared from silk fibroin (SF), silk fibroin/collagen (SF/C) and silk fibroin/gelatin (SF/G) using a freeze drying technique. The blended construct showed superior mechanical properties to silk fibroin construct. In addition, collagen and gelatin, contain RGD sequences that could facilitate cell attachment and proliferation. Therefore, in this study, the ability of silk fibroin and blended constructs to promote cell adhesion, proliferation and production of extracellular matrix (EMC) were compared.MethodsArticular chondrocytes were isolated from rat and cultured on the prepared constructs. Then, the cell viability in SF, SF/C and SF/G scaffolds was determined by MTT assay. Cell morphology and distribution were investigated by scanning electron microscopy (SEM) and histological analysis. Moreover, the secretion of extracellular matrix (ECM) by the chondrocytes in 3-D scaffolds was assessed by immunohistochemistry.ResultsResults from MTT assay indicated that the blended SF/C and SF/G scaffolds provided a more favorable environment for chondrocytes attachment and proliferation than that of SF scaffold. In addition, scanning electron micrographs and histological images illustrated higher cell density and distribution in the SF/C and SF/G scaffolds than that in the SF scaffold. Importantly, immunohistochemistry strongly confirmed a greater production of type II collagen and aggrecan, important markers of chondrocytic phenotype, in SF blended scaffolds than that in the SF scaffold.ConclusionAddition of collagen and gelatin to SF solution not only improved the mechanical properties of the scaffolds but also provided an effective biomaterial constructs for chondrocyte growth and chondrocytic phenotype maintenance. Therefore, SF/C and SF/G showed a great potential as a desirable biomaterial for cartilage tissue engineering.