Non-isothermal crystallization of poly(trimethylene terephthalate)/ single-walled carbon nanotubes nanocompositesSummary -In this work, non-isothermal crystallization behavior of nanocomposites based on poly(trimethylene terephthalate) (PTT) and single-walled carbon nanotubes (SWCNTs) and neat PTT was studied in order to determine the effects of SWCNTs on its crystallization behavior. Nanocomposites with 0.3 and 0.5 wt. % of SWCNTs were studied. Using of SAXS and DSC methods, the nanostructure of PTT/SWCNTs nanocomposites and neat PTT was investigated in real time in the process of crystallization from the melt. The correlation function approach was used to analyze SAXS data. Changes in long period values, thickness of crystalline lamellae, thickness of amorphous layers, degree of crystallinity during cooling from the melt were discussed. Keywords: polymer nanocomposites, poly(trimethylene terephthalate), carbon nanotubes.NIEIZOTERMICZNA KRYSTALIZACJA ZE STOPU NANOKOMPOZYTÓW POLI(TEREFTA-LAN TRIMETYLENU) / JEDNOOECIENNE NANORURKI WÊGLOWE Streszczenie -W pracy omówiono wyniki badañ struktury nadcz¹steczkowej i w³asnooeci termicznych nanokompozytów poli(tereftalanu trimetylenu) (PTT) z jednooeciennymi nanorurkami wêglowymi (SWCNTs). Badane nanokompozyty zawiera³y 0,3 lub 0,5 % mas. SWCNTs. Do oceny dyspersji SWCNTs w matrycy PTT u¿yto skaningowego mikroskopu elektronowego (SEM). Metod¹ ma³ok¹towego rozpraszania promieni rentgenowskich (SAXS) i metod¹ ró¿nicowej kalorymetrii skaningowej (DSC) badano nanostrukturê kompozytów PTT/SWCNTs i PTT w czasie rzeczywistym w trakcie krystalizacji ze stopu. Parametry struktury nadcz¹steczkowej badanych materia³ów wyznaczono na podstawie analizy jednowymiarowych funkcji korelacyjnych. Omó-wiono zachodz¹ce podczas ch³odzenia ze stopu zmiany wartooeci wielkiego okresu, grubooeci lamel krystalicznych, grubooeci obszarów amorficznych oraz stopnia krystalicznooeci. S³owa kluczowe: nanokompozyty polimerowe, poli(tereftalan trimetylenu), nanorurki wêglowe.Carbon-based nanomaterials, such as carbon nanotubes (CNTs), are well known for their extraordinarily high mechanical properties (tensile strength up to 150 GPa, Young's modulus higher than 1 TPa) and they have attracted interest as reinforcing fillers for polymer nanocomposites [1][2][3][4]. Additionally many superior properties of CNTs such as low weight, very high aspect ratio and high electrical conductivity, make them an attractive candidate to produce advanced composite materials with multifunctional features.In recent years, CNTs have been used as reinforcements to enhance mechanical and electrical properties of polymeric matrices [1][2][3][4][5][6][7][8]. It is well known that the properties of polymer nanocomposites are strongly depended on the dispersion of nanofillers. The effective use of CNTs in composite applications depends on the ability to disperse the CNTs uniformly throughout the matrix without reducing their aspect ratio. Application of CNTs as a reinforcement has been limited because of their tendency to form rop...