The polypropylene‐g‐polystyrene (PP‐g‐PS) copolymers with different grafting ratios are used as compatibilizers to control the size of polystyrene (PS) particles at nanometer scale in polypropylene (PP) matrix. Then the PP/PS insulating nanocomposites (containing 10 wt % PS calculated from PS and PP‐g‐PS) are manufactured. With the increase in grafting ratio of PP‐g‐PS, the size of PS particle is reduced and the interfacial adhesion is enhanced. Meanwhile, the dielectric properties, DC breakdown strength and volume resistivity are increased with the decreasing of PS particle size. The spherulite size of PP is decreased and the boundary between crystals and amorphous regions is blurred or even disappears due to the presence of PS nanoparticles. This evolution of PP structure is attributed to the serious entanglements of PP and PS molecular chains. Finally, the correlation between morphological structure and electrical properties is ultimately established based on the in‐depth understanding of the molecular chain movement, crystal structure, and phase morphology. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 706–717