The effects of calcined lead–zirconate–titanate (PZT) powders on the electric properties of PZT/polyvinylidene-trifluorethylene copolymer (PVDF-TrFE) composites thick films were studied in this paper. Firstly, the PZT powders synthesized by hydrothermal method were calcined at different temperatures ranging from 300°C to 900°C, and then the PZT/PVDF-TrFE composites films were produced by casting PZT/PVDF-TrFE suspension onto the indium-tin-oxide (ITO)-coated glass substrates. Electric properties, including dielectric and pyroelectric performances of thick films consisting of PZT powders calcined at different temperatures were tested. The highest pyroelectric coefficient obtained in the sample using 700°C calcined PZT powders was 96 μCm-2K-1, which was 20% higher than the composites made of uncalcined powders. Additionally, the highest detectivity figure-of-merit (FOM) (F D ) of the composite was 1.36 × 10-5Pa-1/2, which increased about 13.5% compared to the one using uncalcined powders.