In this work, a SiO2-doped natural photocatalyst derived from waste mussel shell (HAS) was prepared by acidification. The as-prepared sample was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-visible diffuse-reflectance spectrum (UV-vis DRS), and Differential scanning and thermogravimetric analyses (DTA/TGA). The results exhibited that HAS was mesopores nanomaterial consisting of uneven arranged rod-like structure, the dominant component of HAS was SiO2 with a large number of hydroxyl groups, and a variety of transition metals uniformly distributed in HAS. Rhodamine B (RhB) and methylene blue (MB) removal efficiencies (equal to 92.59% and 99.14%, respectively) were observed under the HAS presence when exposed to the visible light. The degradation products were analyzed using liquid Chromatograph Mass Spectrometer (LC-MS) and Total Organic Carbon (TOC), among which, MB was degraded by demethylation and deamination, and RhB was degraded by N-deethylation and conjugate structure destruction. After four successive recycles, the removal efficiency of RhB and MB are still reach 86.103% and 75.844%. This study indicated that the mussel shells might be suggested as a novel natural photocatalyst in the application of dye wastewater treatment.